Как избавиться от квадратного корня

Что означает «извлечение корня»?

Введем понятие извлечения корня.

Определение.

Извлечением корня называется нахождение значения корня.

Итак, извлечение корня n-ой степени из числа a – это нахождение числа b, n-ая степень которого равна a. Когда такое число b найдено, то можно утверждать, что мы извлекли корень.

Заметим, что выражения «извлечение корня» и «нахождение значения корня» одинаково употребимы.

Пришло время разобрать способы извлечения корней. Они базируются на свойствах корней, в частности, на равенстве , которое справедливо для любого неотрицательного числа b.

Ниже мы по очереди рассмотрим основные способы извлечения корней.

Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п. Ознакомиться…

Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители. Перейти к изучению этого способа…

Отдельно стоит остановиться на извлечении корня из отрицательного числа, что возможно для корней с нечетными показателями.

Дальше мы разберем извлечение корня из дробного числа, в частности, из обыкновенной дроби, десятичной дроби и смешанного числа. Перейти к этому разделу…

Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня. Изучить…

Приступим.

В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?

Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99. Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83.

Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99. На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889, которое является квадратом числа 83.

Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.

Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.

Предлагаем ознакомиться:  Болит зуб после лечения пульпита: причины, что делать

Допустим, нам нужно извлечь корень n-ой степени из числа a, при этом число a содержится в таблице n-ых степеней. По этой таблице находим число b такое, что a=bn. Тогда , следовательно, число b будет искомым корнем n-ой степени.

В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683. Находим число 19 683 в таблице кубов, из нее находим, что это число является кубом числа 27, следовательно, .

Понятно, что таблицы n-ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.

Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем: после разложения числа на простые множители его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.

Пусть из натурального числа a извлекается корень n-ой степени, и его значение равно b. В этом случае верно равенство a=bn. Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p1, p2, …, pm в виде p1·p2·…·pm, а подкоренное число a в этом случае представляется как (p1·p2·…·pm)n.

Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p1·p2·…·pm)n, то корень n-ой степени из такого числа a нацело не извлекается.

Разберемся с этим при решении примеров.

Пример.


Извлеките квадратный корень из 144.

Решение.


Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=122, откуда понятно, что квадратный корень из 144 равен 12.


Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.


Разложим 144 на простые множители:


То есть, 144=2·2·2·2·3·3. На основании свойств степени с натуральным показателем с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2)2·32=(2·2·3)2=122. Следовательно, .


Используя свойства степени и свойства корней, решение можно было оформить и немного иначе: .

Ответ:

.

Для закрепления материала рассмотрим решения еще двух примеров.

Предлагаем ознакомиться:  Спреи от боли : названия и способы применения

Пример.


Вычислите значение корня .

Решение.


Разложение на простые множители подкоренного числа 243 имеет вид 243=35. Таким образом, .

Ответ:

.

Пример.


Является ли значение корня целым числом?

Решение.


Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.


Имеем 285 768=23·36·72. Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.

Ответ:


нет.

Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде обыкновенной дроби как p/q. Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби: корень из дроби равен частному от деления корня из числителя на корень из знаменателя.

Разберем пример извлечения корня из дроби.

Пример.


Чему равен квадратный корень из обыкновенной дроби 25/169.

Решение.


По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5, а квадратный корень из знаменателя равен 13. Тогда . На этом извлечение корня из обыкновенной дроби 25/169 завершено.

Ответ:

.

Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.

Пример.


Извлеките кубический корень из десятичной дроби 474,552.

Решение.


Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000. Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13=(2·3·13)3=783 и 1 000=103, то и . Осталось лишь завершить вычисления .

Ответ:

.

Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a и нечетного показателя корня 2·n−1 справедливо .

Предлагаем ознакомиться:  Сколько заживает вырванный зуб мудрости

Рассмотрим решение примера.

Пример.


Найдите значение корня .

Решение.


Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью: . Применяем правило извлечения корня из обыкновенной дроби: . Осталось вычислить корни в числителе и знаменателе полученной дроби: .


Приведем краткую запись решения: .

Ответ:

.

В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n-ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.

На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.

Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5. Имеем 02=0{amp}lt;5, 102=100{amp}gt;5, значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.

Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2, на втором – 2,2, на третьем – 2,23, и так далее 2,236067977…. Опишем, как происходит нахождение значений разрядов.

Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9. При этом параллельно вычисляются n-ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9.

Оцените статью
Здоровые зубы
Добавить комментарий

Adblock detector